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Abstract. Renormalized triple gauge vertices (TGV) are examined within the two-Higgs-doublet model of
the electroweak interactions. Deviations of the TGV from their standard-model values are calculated at the
one-loop level, in the on-shell renormalization scheme. As a consistency check, UV divergence cancellations
anticipated on symmetry grounds are verified explicitly. The dependence of the TGV finite parts on the
masses of possible heavy Higgs scalars is discussed briefly.

1 Introduction

The two-Higgs-doublet model (THDM) has been on stage
in particle physics since the early days of spontaneously
broken gauge theories (to the best of our knowledge, it has
emerged first in [1], in connection with the problem of T -
violation). THDM represents one of the simplest and most
natural extensions of the electroweak standardmodel (SM):
its Higgs sector contains an extra complex scalar doublet,
in addition to the usual SM one. This means, among other
things, that there are five physical scalar particles in the
THDM spectrum, instead of the single SM Higgs boson.
On the other hand, the doublet structure of the Higgs
sector automatically guarantees the validity of the tree-
level relation ρ = 1 for the familiar electroweak parameter
ρ = m2

W /(m2
Z cos2 θW), in complete analogy with the SM.

Despite its conceptual simplicity, THDM can incorpo-
rate various kinds of “new physics” beyond SM and thus
it has always been of considerable phenomenological inter-
est; a concise overview of its possible applications can be
found e.g. in [2]. It remains quite popular at the present
time, as the Higgs physics (or, more generally, the physics
of electroweak symmetry breaking) represents the central
issue of the high-energy experiments planned for the near-
est future. Note that a part of the current popularity of
the THDM is due to the fact that its Higgs sector essen-
tially coincides with that of the minimal supersymmetric
SM (MSSM), but is obviously less constrained. For some
recent work on the THDM phenomenology, see e.g. [3–6]
and references therein; a recent review of the subject can
be found in [7].

One of the interesting technical aspects of the general
THDM is that it admits “non-decoupling effects” in the
Higgs sector: the heavy Higgs scalars (i.e. mHiggs � mW )
cannot be simply integrated out in the low-energy domain
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(s ∼ m2
W ) and may give non-negligible contributions to

some scattering amplitudes. Note that this is not the case
in the MSSM, where the heavy Higgs bosons decouple in ac-
cordance with the Appelquist–Carazzone theorem [8] (for
the corresponding MSSM analysis see [9]). The non-decou-
pling effects in THDM have been studied previously for the
process e+e− → W+W− [10] within an approximation cor-
responding to the equivalence theorem (ET) [11] for longi-
tudinal vector bosons. Here and in a forthcoming paper [12]
we pursue this theme further by performing more detailed
calculations that enable one to go beyond the framework
of the ET approximation. In the present paper we calcu-
late, at the one-loop level, the THDM contributions to the
triple gauge vertices (TGV). These vertex corrections play
the most important role in the possible non-decoupling ef-
fects; some applications of the results presented here will
be discussed in detail in [12]. Some preliminary results in
this direction have already appeared in [13].

This paper is organized as follows. In Sect. 2 a brief
review of the THDM structure is given. Section 3 is de-
voted to kinematics, notation and some other technical
prerequisites. In Sect. 4 we specify the quantities of our
main interest and sketch the method of their calculation.
We display all relevant Feynman diagrams together with
the corresponding analytic expressions. The proper can-
cellation of UV-divergences is demonstrated in Sect. 4.6.
In Sect. 5 we present a brief discussion of the results, in
particular the mass dependence of the finite parts of renor-
malized TGV. Most of the technical details (structure of
the Higgs–vector-boson interactions, coupling constants,
useful integrals) are deferred to appendices.

2 Basic structure of THDM

In this paper we adopt the “classic” notation of [14]. We do
not restrict ourselves to any particular realization of the
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THDM Higgs potential unless stated otherwise. As we shall
see, although the relevant one-loop on-shell counterterms
can in principle involve contributions descending from the
Higgs self-couplings dictated by the particular realization of
the model, they cancel out in the counterterm prescription.

2.1 The Higgs potential and spectrum

The most general THDM Higgs potential can be written as

V (Φ1, Φ2) = m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.)

+
λ1

2
(Φ†

1Φ1)2 +
λ2

2
(Φ†

2Φ2)2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

λ5

2
(Φ†

1Φ2)2 +
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
(Φ†

1Φ2) + h.c.
}

.

It is convenient to parametrize the doublets by means of
eight real scalar fields:

Φ1 =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, Φ2 =

1√
2

(
φ5 + iφ6

φ7 + iφ8

)
.

The asymmetric vacuum is chosen so that

〈φ1〉 = v1, 〈φ7〉 = v2, 〈φi〉 = 0 for i �= 1, 7,

where v1 and v2 are real constants. It is useful to introduce
the angle β through tanβ ≡ v2/v1.

The mass-squared matrix M2
ij ≡ 〈

∂2V/∂φi∂φj

〉
turns

out to be block-diagonal, with each block having dimension
2. The diagonalization is straightforward and gives rise to
the spectrum consisting of
(1) two charged states H± and G± with masses m2

H± �= 0
and m2

G± = 0:

G− =
1√
2

[(φ1 + iφ2) cos β + (φ5 + iφ6) sin β]

H− =
1√
2

[−(φ1 + iφ2) sin β + (φ5 + iφ6) cos β] ;

(2) two neutral pseudoscalar states A0 and G0 with m2
A0 �=

0 and m2
G0 = 0, which are mixed through the same angle β:

G0 = φ4 cos β + φ8 sin β,

A0 = −φ4 sin β + φ8 cos β;

(3) two neutral scalar states H0 and h0 with m2
H0 > m2

h0 �=
0, mixed through another angle, α:

H0 = (φ1 − v1) cos α + (φ7 − v2) sin α,

h0 = −(φ1 − v1) sin α + (φ7 − v2) cos α.

Then the doublets Φ1 and Φ2 can be written in terms
of the physical fields as follows:

Φ1 =

1√
2

[ √
2G+ cos β − √

2H+ sin β

H0 cos α − h0 sin α + v1 + iG0 cos β − iA0 sin β

]
,

Φ2 = (1)

1√
2

[ √
2G+ sin β +

√
2H+ cos β

H0 sin α + h0 cos α + v2 + iG0 sin β + iA0 cos β

]
.

Note that the G± and G0 are the unphysical Goldstone
bosons to be eaten in the Higgs mechanism and h0, H0,
A0 and H± represent the physical scalars.

2.2 Interactions of THDM Higgs bosons with
vector bosons

Interactions of the Higgs bosons with intermediate vector
bosons descend from the gauge-invariant kinetic term

Lkin
Higgs = (DµΦ1)†(DµΦ1) + (DµΦ2)†(DµΦ2). (2)

Here the covariant derivative is defined by

Dµ ≡ ∂µ + i
g√
2
(W+

µ T+ + W−
µ T−) + ieAµQ

+ i
g

cos θW
Zµ(T3 − Q sin2 θW),

where the weak isospin operators T± ≡ T1± iT2 and T3 are
expressed in terms of the Pauli matrices as Ti ≡ 1

2τi and the
charge operator is given by Q = T3+YW , with YW denoting
the weak hypercharge. Inserting now the expansion (1)
into (2) one gets the relevant part of the physical lagrangian;
its detailed form is deferred to Appendix A.

2.3 Interactions with fermions

In general there are several different realizations of THDM
[3, 14]. They differ mainly in the structure of the Yukawa
couplings of the THDM Higgs bosons to fermions. As we
shall see, the one-particle irreducible (1PI) one-loop graphs
relevant for our purpose (i.e. those representing the leading-
order corrections to the tree-level structure of TGV in
THDM) do not include such Yukawa vertices. Therefore,
we need not distinguish various THDM types in the sub-
sequent computation.

3 Structure of triple gauge vertices

As in the SM case, there are two triple gauge vertices in
THDM: γWW andZWW . Let us denote the corresponding
1PI Green functions by

��
�

�

≡ −icγΓ γWW
σµν (qi),

��
�

�

≡ −icZΓZWW
σµν (qi).

(3)
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Here cγ ≡ e, cZ ≡ e/ tan θW are tree-level triple gauge
couplings, and q1, q2 and q3 denote the four-momenta of
the W+, W− and γ (or Z), all of them taken as outgoing.

3.1 Tree-level triple gauge vertices

Taking into account the momentum conservation, the tree-
level TGV has the familiar form (see e.g. [15])

ΓV WW
σµν (q1, q2) = (4)

(q1 − q2)σgµν + (2q2 + q1)µgσν − (2q1 + q2)νgσµ,

where V stands for γ or Z. It is convenient to define

C1
σµν ≡ q1σgµν , C2

σµν ≡ 2q2µgσν , C3
σµν ≡ q1µgσν .

(5)
In terms of these quantities we can write

ΓV WW
σµν = C1

σµν + C3
σµν + C3

σµν + sym. ≡ Tσµν , (6)

where “+sym.” denotes the interchange q1 ↔ −q2, µ ↔ ν
in the preceding expression.

3.2 Triple gauge vertices at one-loop order

The full one-loop renormalized TGV receive a much more
involved structure. Let us divide the set of all relevant one-
loop diagrams into two subsets, where Γ = ΓF + ΓB rep-
resent the graphs involving one fermionic and one bosonic
loop respectively. As we have already noted, the fermionic
one-loop contributions to TGV in SM and THDM are the
same and therefore there is no need to discuss them.

It is clear that the on-shell TGV can only involve ten-
sors at most trilinear in the external momenta (with bilin-
ear terms obviously absent). Thus, we can decompose the
bosonic part into a basis consisting of the linear terms (5)
and trilinear ones:

C4
σµν ≡ 1

m2
W

q1σq1µq1ν , C5
σµν ≡ 1

m2
W

q1σq1µq2ν , (7)

C6
σµν ≡ 1

m2
W

q1σq2µq1ν , C7
σµν ≡ 1

m2
W

q2σq1µq1ν ,

and write Γ in the form

ΓV WW
σµν =

(
Tσµν +

∑
ΓV WW

σµν + δZTGVTσµν

)
+ ΓV WW

F .

(8)
The first term in the brackets is the tree-level part (6),
the second one comes from the sum of all relevant bosonic
one-loop 1PI graphs and the third one represents the cor-
responding counterterm. The second term can now be ex-
panded as

∑
ΓV WW

σµν =
7∑

i=1

ΠV WW
i (q2

1 , q2
2 , m2

j )C
i
σµν + sym., (9)

and using this we can rewrite the full one-loop renormalized
Green function (8) in the form

ΓV WW
σµν =

3∑
i=1

(
1 + δZTGV + ΠV WW

i

)
Ci

σµν (10)

+
7∑

i=4

ΠV WW
i Ci

σµν + ΓV WW
F + sym.

Concerning the notation, let us add that the symbol δZ cor-
responds to the usual split of the renormalization constant
Z = 1 + δ Z.

4 Deviations of THDM one-loop triple gauge
vertices from SM

As in the SM case [16] the full one-loop corrected TGV
in THDM are very complicated because of the rich field
contents of the theory. Since the models differ only in the
Higgs sector, we can utilize the previous results in the non-
Higgs sector and compute only the graphs which are not
common to both models. These additional pieces can even
be used separately in many situations. For example, it is
shown in [12] that the leading one-loop correction to the SM
value of the differential cross sections of e+e− → W+W−
in THDM can be written in the form

dσTHDM

dσSM = 1 + 2Re
∆M1−loop

[
∆ΓV WW

]
MSM

tree
+ . . .

Here the structure of the term ∆M1−loop is determined
by the differences of the one-loop renormalized Green func-
tions in THDM and SM defined by

∆ΓV WW
σµν ≡ [

ΓV WW
σµν

]
THDM

− [ΓV WW
σµν

]
SM

. (11)

Using (10) we can recast the last expression as

∆ΓV WW
σµν =

3∑
i=1

(
∆δZTGV + ∆ΠV WW

i

)
Ci

σµν (12)

+
7∑

i=4

∆ΠV WW
i Ci

σµν + sym.

(note the cancellation of the fermionic part). Here we
have denoted

∆δZTGV ≡ (δZTGV)THDM − (δZTGV)SM, (13)

∆ΠV WW
i ≡ (ΠV WW

i )THDM − (ΠV WW
i )SM.

Our goal is therefore to write down the quantities ∆δZTGV
and ∆ΠV WW

i for i = 1, . . . , 7. Note that there is a non-
trivial consistency check for the resulting expressions: The
divergent parts of the ∆ΠV WW

i for i = 1, 2, 3 and V = γ, Z
must be equal in order to be successfully “eaten” by the
divergences of∆δZTGV.Moreover, the quantities∆ΠV WW

i
for i = 4, . . . , 7 have to be finite because the gauge-invariant
lagrangian does not contain corresponding counterterms.
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4.1 Renormalization framework

In this paper we use the set of renormalization constants
introduced in [15] (except that we use the symbol δZTGV
instead of δZg of [15] to express the fact that δZTGV is
not the usual counterterm corresponding to the fermion–
gauge-boson vertex). The parameters are fixed so that the
renormalized propagators have poles at the corresponding
physical masses and the residues are normalized to 1. As we
show below, a Ward identity connects the TGV countert-
erm δZTGV to the wave-function renormalization constant
δZW of the W boson propagator.

The only information we need is the structure of the
vector-bosonpropagator counterterms in the on-shell renor-
malization scheme. The one-loop renormalized inverse
propagator has the general form

ΓV V
µν (k) = Γ (0)

µν (k) + Πµν(k) + δZV k2PT
µν − δm2

V gµν

+ gauge dependent term,

where Γ
(0)
µν (k) is the zeroth-order inverse propagator (in

Feynman gauge Γ
(0)
µν (k) = (k2 − m2)(PT

µν + PL
µν)). The

on-shell counterterms are fixed by

δZV = −
[
ΠT

V V (m2
V ) + m2

V

d
dq2

∣∣∣∣
q2=m2

V

ΠT
V V (q2)

]
, (14)

δm2
V = −m4

V

d
dq2

∣∣∣∣
q2=m2

V

ΠT
V V (q2), (15)

and ΠT
V V (q2) is the coefficient of the transverse projection

operator in the decomposition of the vector-boson self-
energy iΠV V

µν (k), namely

iΠV V
µν (k) ≡ ik2ΠT

V V (k2)PT
µν + ik2ΠL

V V (k2)PL
µν .

4.2 Relation ∆δZTGV = ∆δZW

The photon mass counterterm is in our scheme expressed as

δm2
γ = − s2θ c2

θm
2
ZZH

(
1 − δv

v

)2

(1 − ZW Z−1
TGV)2

(see Appendix C of [15]). Utilizing (15) one obtains

s2θ c2
θm

2
ZZH

(
1 − δv

v

)2

(1 − ZW Z−1
TGV)2

= lim
m→0

m4 d
dq2

∣∣∣∣
q2=m2

ΠT
γγ(q2) = 0,

which yields ZTGV = ZW or equivalently δZTGV = δZW

and thus
∆δZTGV = ∆δZW . (16)

This is the key relation in the following calculation.

4.3 Computation of ∆δZW

Note first that there is no tadpole contribution to the δZW

computed by means of (14). This is gratifying in view of
the complicated structure of the trilinear Higgs couplings.
Defining as usual ∆ΠT

WW ≡ [ΠT
WW ]THDM − [ΠT

WW ]SM we
can write

∆δZW = −
[
∆ΠT

WW (m2
W ) + m2

W

d
dq2

∣∣∣∣
q2=m2

W

∆ΠT
WW (q2)

]
.

4.3.1 Relevant diagrams

There are only two relevant topologies contributing
to ∆δZW :

�
�

�
�

�

�

a b

(17)

The two scalar lines in the first graph correspond to the
configurations {ηG±} in SM and {h0G±, H0G±, h0H±,
H0H±, A0H±} in THDM. The internal scalar and vector
lines in the second case are {ηW±} in SM and {h0W±,
H0W±} in THDM. All remaining graphs are common to
both models and therefore cancel in the relative quantities.

Using the dimensional regularization with d = 4 − 2ε
the graphs (17a) give

∆δZa
W =

( ∑
THDM

−
∑
SM

)
|gWA±B |2 1

16π2 (18)

×
[

1
3
CUV − 2

∫ 1

0
dxx(1 − x) log

DA±B
x (m2

W )
µ2

]
,

while the type (17b) yields

∆δZb
W =

( ∑
THDM

−
∑
SM

)
g2

WWB

1
16π2

∫ 1

0
dx

x(1 − x)
DWB

x (m2
W )

.

(19)
Here we use the abbreviations

DXY
x (q2) ≡ m2

X(1 − x) + m2
Y x − q2x(1 − x),

CUV ≡ 1
ε

− γE + log 4π.

The explicit expressions for the coupling constants gWA±B

and gWWB can be found in Appendix A.2.

4.4 Computation of ∆ΠV W W
i

Let us first present the list of all diagrams that are not
common to both models and therefore do not cancel triv-
ially in ∆ΠV WW

i . The charged bosons propagating in the
loops are denoted by a generic symbol A± and the neutral
ones by B and C. All topologies are supplemented by the
list of relevant field configurations.
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4.4.1 Relevant topologies

The relevant topologies are as follows:

(1)��
�

�

�
�

�

�
�

(2)��
�

�

�

�

�
�

(3)��
�

�

�

�

�

(4)�� �

�
� �

�

(5)�� �

�

�
�

�
�

(20)

(6)��
�

�

�

�
�

�

(7)��
�

�

�

�

�

Note that V in (1)–(5) corresponds to γ and Z – these topol-
ogies are common to both the ∆Γ γWW and ∆ΓZWW func-
tions. The graphs (6) and (7) contribute only to ∆ΓZWW .

4.4.2 Relevant field configurations

The configurations of the internal lines denoted by A±,
B, and C in the Feynman diagrams above can be read off
from Table 1.

Note that according to the previous definitions the sym-
bols ∆ΓV WW (i) denote the differences of the contributions
coming from the previous graphs with the overall (tree)
coupling constants thrown away. Thus, if we denote by G(i)

the expressions obtained from these graphs just by using
the appropriate Feynman rules, one has

−icV ∆ΓV WW (j) ≡ G
(j)
THDM − G

(j)
SM. (21)

The couplings cV are defined in (3). With all this at hand
it is already easy to extract the corresponding ∆ΠV WW

i

out of
∑

j ∆ΓV WW (j) in accordance with definitions (9)
and (13).

4.5 Evaluation of ∆ΠV W W
i

Let us now summarize the contributions of the graphs (20)
to the TGV differences (21). The coupling constants and
the integrals appearing in the following expressions can be
found in the appendices. The additional numerical factors
are usually due to the symmetry properties of the graphs.

Table 1. Field configurations in the triangular graphs (20)

Case SM and THDM field configurations

(1) SM: A±B = G±η

THDM: A±B = G±h0, G±H0, H±A0,
H±h0,H±H0

(2) SM: B = η

THDM: B = h0, H0

(3) SM: B = η

THDM: B = h0, H0

(4) SM: A±B = G±η

THDM: A±B = G±h0, G±H0, H±A0,
H±h0, H±H0

(5) SM: A± = nothing
THDM: A± = H±

(6) SM: A±BC = G±G0η

THDM: A±BC = G±G0h0, G±G0H0,
H±A0h0, H±A0H0

(7) SM: B = η

THDM: B = h0, H0

The diagrams (1)–(5) that contribute to both ∆Γ γWW and
∆ΓZWW yield the expressions

−icV ∆ΓV WW
σµν

(1)
=

( ∑
THDM

−
∑
SM

)
1
2
gV A+A− |gWA±B |2

× I(1)
σµν(q1,−q2, mB , mA+ , mA−), (22)

−icV ∆ΓV WW
σµν

(2)
=

( ∑
THDM

−
∑
SM

)
gV WG±gWWBg∗

WG±B

× I(2)
σµν(q1,−q2, mB , mG± , mW ), (23)

−icV ∆ΓV WW
σµν

(3)
=

( ∑
THDM

−
∑
SM

)
1
2
gV WW g2

WWB

× I(3)
σµν(q1,−q2, mB , mW , mW ), (24)

−icV ∆ΓV WW
σµν

(4)
=

( ∑
THDM

−
∑
SM

)
gV WA±Bg∗

WA±B

× I(4)
σµν(q1,−q2, mB , mA±), (25)

−icV ∆ΓV WW
σµν

(5)
= 0.

Note that ∆ΓV WW
σµν

(5) vanishes since it turns out to be
proportional to

∫ 1
0 dx(1−2x) log

[
m2 − x(1 − x)q2

]
, which

is obviously zero.
Diagrams (6) and (7) provide an extra contribution to

∆ΓZWW :

−icZ∆ΓZWW
σµν

(6)
=

( ∑
THDM

−
∑
SM

)
gZBCgWA±Bg∗

WA±C

× I(1)
σµν(q1,−q2, mA± , mC , mB),
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−icZ∆ΓZWW
σµν

(7)
=

( ∑
THDM

−
∑
SM

)
2gZZBgWWZgWWB

× I(5)
σµν(q1,−q2, mW , mZ , mB).

The summations are taken with respect to the configura-
tions shown in Table 1.

4.6 Cancellation of UV-divergences

Since we compute the one-loop counterterm ∆δZTGV by
means of a specific subset of diagrams we should check
that the sum of the UV-divergences of ∆ΠV WW

i “fit” the
divergent part of ∆δZTGV to obtain a UV-finite expression
for (12).

To proceed, we must first extract the divergent parts
of all the ∆ΓV WW

σµν
(j). Taking into account the prescrip-

tions specified in Appendix B we can see that the only
UV-divergent integral we deal with is I(1). In the usual
way we can isolate the divergent part of it in the form

DivUV

[
I(1)
σµν(q1,−q2, mj)

]
= − 1

24π2 CUV Tσµν .

Computing now the totalUV-divergences of∆Γ γWW
σµν

(j)

and ∆ΓZWW
σµν

(j) we get

DivUV


∑

j

∆Γ γWW
σµν

(j)


 = DivUV

[
∆Γ γWW

σµν

(1)
]

= − i
e

( ∑
THDM

−
∑
SM

)
gγA+A− |gWA±B |2 1

48π2 CUV Tσµν

= − 1
96π2

e2

sin2 θ
CUV Tσµν (26)

In the case of ∆ΓZWW we have two UV-divergent topolo-
gies, namely

DivUV


∑

j

∆ΓZWW
σµν

(j)




= DivUV

[
∆ΓZWW

σµν

(1)
]

+ DivUV

[
∆ΓZWW

σµν

(6)
]

= − i
e cot θ

( ∑
THDM

−
∑
SM

)

×
(
gγA+A− |gWA±B |2 + gZBCgWA±Bg†

WA±C

)

=
1

48π2 CUV Tσµν = − 1
96π2

e2

sin2 θ
CUV Tσµν .

From this we can conclude that

DivUV

[
∆ΠZWW

1,2,3
]

= DivUV

[
∆ΠγWW

1,2,3

]

= − 1
96π2

e2

sin2 θ
CUV ,

DivUV

[
∆ΠZWW

4,5,6,7
]

= DivUV

[
∆ΠγWW

4,5,6,7

]
= 0. (27)

Next, the divergent part of ∆δZTGV can be easily derived
from (18):

DivUV [∆δZW ] =
1
3

( ∑
THDM

−
∑
SM

)
|gWA±B |2 1

16π2 CUV

=
1

96π2

e2

sin2 θW
CUV . (28)

Comparing (27) with (28) we can conclude that the UV-
divergences in (12) cancel exactly as expected.

5 Computation of ∆Γ γW W and ∆Γ ZW W

In view of the large number of relevant Feynman graphs
it is not feasible to display all the general results in detail.
This is mainly because of the Passarino–Veltman (PV)
reduction which is traditionally used to “scalarize” the
tensorial structure of the resulting integrals [17,18].

Therefore we will only describe briefly some salient
points, in particular the origin of the possible non-decou-
pling effects of heavy virtual Higgses.

5.1 Finite part of ∆δZTGV

The mass dependence of the counterterms can be read off
from (18) and (19). Assuming the masses of the THDM
Higgs bosons to be well above mW we can estimate the
value of ∆δZb

W to be less than about 10−4 (and falling with
mH , mh → ∞) i.e. small compared to the expected order
of magnitude of non-decoupling effects (10−2–10−3).

The situation in the case of ∆δZa
W is more subtle be-

cause of the presence of the µ scale in the logarithm in (18).
However, due to the above-mentioned cancellation of di-
vergences (4.6) the overall one-loop renormalized Green
functions are µ-independent and we can either choose some
particular value of µ or combine that term with the cor-
responding µ-dependent factor from the ∆Πi to obtain
µ-independent quantities and discuss both these pieces to-
gether.

Note that the behavior of the counterterms is scheme-
dependent. For example in MS or MS the finite parts of
∆δZa,b

W are constant while in the on-shell scheme they
typically grow logarithmically with masses of the Higgs
particles in the loops. However, since they are strongly
suppressed with respect to the finite parts of the ∆Πi, this
scheme-dependence is practically negligible.

5.2 Finite parts of the ∆Πi

Concerning the structure of integrals contributing to the
∆Π (Appendix B), one finds that the possible non-decou-
pling effects in the large heavy Higgs mass regime (keeping
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mη and mh0 at the weak scale) can descend only from the
divergent factors Cαβγ , Cαβ , Bα and B0; all the others
(UV-finite) tend to zero. Note that in some situations the
straightforward mheavy → ∞ limit is not meaningful be-
cause in such a case the Higgs self-couplings may blow up,
and the perturbative approach used here is then no longer
valid; see below.

Next, the mass dependence of the B-terms seems to be
much weaker compared to the highly polynomial factors in
Cαβγ . On the other hand, the apparent powerlike behavior
of the PV coefficients in the expansions of the Cαβγ is
often compensated by the powers of heavy Higgs masses in
the denominators of the PV scalar integrals C0, and thus
there is no reason to suppress the B-terms relative to the
C-terms.

As an illustration, consider the combination Cαβγ(p1,

p2, m0, m1, m2) + sym. in I
(1)
αβγ entering the ∆ΠV WW

1,2,3 on-
shell, i.e. taking p2

1 = p2
2 = m2

W , (p1 + p2)2 = s. First note
that this quantity is dimensionless. Bearing in mind how
the PV reduction works we can expect coefficients of three
basic types (here B̃0 denotes the finite part of B0, k is
integer, and n = 0, 1, 2, . . .):

(a) M6−n
i skm−2k+n

W C0(p2, . . . , M2
i , . . .),

(b) M4−n
i skm−2k+n

W B̃0(p2, M2
i , . . .), (29)

(c) M2−n
i skm−2k+n−2

W .

A typical contribution to ∆ΠV WW
1,2,3 then looks like

∆ΠV WW
1,2,3 ∼ f

16π2 |gWA±B |2 × X + . . . ,

with X being an expression from the set (29). Here f is an
O(1) numerical factor; gWA±B are the couplings. Though
it seems that the leading terms are of the order M6

i , such
a growth is in fact reduced by factors involving negative
powers of masses, coming from denominators of the C0
functions in the heavy Higgs mass regime. The suppression
is even stronger once the parameters obey the decoupling
limit behavior; see below. Therefore one has to be very
careful in semiquantitative arguments based on (29).

Unfortunately, due to the enormous complexity of the
results it is almost hopeless to try to get simple general
analytic expressions for the leading terms in the ∆ΠV WW

i
even in the heavy Higgs mass regime. Next, it is worth
focusing in particular to the caseswhen one cannot expect the
decoupling of the additional Higgs bosons in the Appelquist–
Carazzone manner.

For such setups we have performed at least a simple
numerical analysis with the following results1.
(1) The leading terms in the |∆ΠV WW

i | typically con-
tain logarithms and inverse powers of the heavy Higgs
masses, i.e.

|∆ΠV WW
i |

1 We have also checked the proper decoupling behavior of
the form factors in the cases that the heavy Higgs sector has
been adjusted towards the decoupling regime; this provides a
simple consistency check of the results.

∼ f

16π2 |g1g
∗
2 |
[
k1 log

mHiggs

mW
+ k2 O(mW m−1

Higgs)
]

+ . . .

This means that the larger the Higgs masses are, the
smoother the ∆ΠV WW

i behave and their behavior tends
to be purely logarithmic (of course, with k1 → 0 in the
decoupling regime).
(2) The overall magnitudes of |∆ΠV WW

i | usually turn out
to be around 10−3 (at mHiggs ∼ mW ), so the possible large
non-decoupling effects in physical amplitudes seem to be
quite unlikely, barring some special enhancements coming
from kinematics and/or geometrical factors [12].

Let us illustrate these features in the case of | ∆ΠV WW
1 |

and | ∆ΠV WW
2 | within one of the concrete realizations of

the Higgs sector of the model. Although the Higgs self-
couplings do not enter explicitly our analysis, their values
determine the shape of the Higgs spectrum of the model
which must be chosen in a way compatible with these
constraints. In other words, shifting the heavy Higgs masses
and holding at the same time some of the features of the
Higgs potential unchanged causes a shift in the mixing
angles α and β which propagates via sin(α−β) and cos(α−
β) to the vector-boson–Higgs couplings.

For simplicity, we take2

λ6 = λ7 = 0, m12 = 0, (30)

and especially

λ1 = λ2 ≡ λ, λ3 = 1 and β = π/2.

The remaining parameters λ, λ4, λ5 α, m1 and m2 are then
driven by the choice of mh, mH , mA, mH± so that the
resulting Higgs potential produces the right mass pattern.

For example, let us display in Figs. 1 and 2 the behavior
of the |∆ΠγWW

1 | and |∆ΠγWW
1 | in this model as functions

of the mA0 parameter. The other parameters are fixed as
follows: mη = 105 GeV, mh0 = 125 GeV, mH0 = 145 GeV,
mH± = 180 GeV,

√
s = 250 GeV. As was stated above,

these quantities grow logarithmically (in the non-decou-
pling setup (30)) with the mass of the relatively heavy m0

A
boson in the model.

2 N.B. It is well known that the choice (30) provides a setup
in which the heavy Higgs mass limit does not exist at all [5],
i.e. we cannot push the Higgs masses too far beyond the weak
scale. This is caused by the fact that in this setup all the THDM
Higgs masses must be of the same order:

m2
h + m2

H = λv2, m2
A = − Re λ5v

2,

m2
H± = −1

2
(λ4 + Re λ5)v2,

Then the only way to get large masses of H, A and H± consists
in having λ, |λ4| and Re λ5 well above 1. In other words, it
is exactly one of the physically interesting situations in which
one can expect non-decoupling behavior of the heavy part of
the THDM Higgs spectrum and some (in principle) measurable
deviations from the SM predictions; for further details see for
example [12].
The main advantage of the choice is the simplicity of the re-
lation for cos2(α − β) which is the basic ingredient of any
quantitative analysis.
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Fig. 1. Behavior of the |∆ΠγWW
1 | as function of the mA0

parameter
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Fig. 2. Behavior of |∆ΠγWW
1 | as function of the mA0 parameter

6 Conclusion

We have computed the additional contributions to the one-
loop THDM triple gauge vertices which are not present
within the SM framework. The model is taken to be very
general [14] with no need of any additional constraints to
its structure.

We have adopted the on-shell renormalization scheme,
using the dimensional regularization of UV-divergences.
The finite parts of the on-shell counterterms are computed
with the help of the W -boson propagator renormalization
constants. Cancellation of UV-divergences is checked ex-
plicitly in both the γWW and ZWW case.

The THDM heavy Higgs boson contributions to the
triple gauge vertices can in some situations lead to possible
non-decoupling effects in physical amplitudes. Therefore,
these results can be employed (at least in principle) for
an indirect exploration of the structure of the electroweak
Higgs sector at future collider facilities.

Acknowledgements. This work was supported by “Centre for
Particle Physics”, project No. LN00A006 of the Ministry of
Education of the Czech Republic.

A THDM interactions of vector bosons

A.1 Relevant part of THDM lagrangian

The lagrangian (2) can be decomposed into three parts
corresponding to VHH, VVH and VVHH vertices respec-
tively:

Lkin
Higgs == LV V H + LV HH + LV V HH + other terms.

Here

LV V H

= emZ cot θWW+µ
W−

µ

[
H0 cos(α − β) − h0 sin(α − β)

]
+

emZ

sin 2θW
ZµZµ

[
H0 cos(α − β) − h0 sin(α − β)

]
+ emZ (cos θWAµ − sin θWZµ)

(
W+

µ G− + W−
µ G+)

and

LV HH = ieAµH+∂↔
µ H− + ieAµG+∂↔

µ G−

+ ie cot 2θWZµH+∂↔
µ H− + ie cot 2θWZµG+∂↔

µ G−

+
e

sin 2θW

× {
Zµ
[
cos(α − β)A0∂↔

µ h0 − sin(α − β)G0∂↔
µ h0]

+ Zµ
[
sin(α − β)A0∂↔

µ H0 + cos(α − β)G0∂↔
µ H0]

− cos (α − β)
(
W−µ

h0∂↔
µ H+ + W+µ

H−∂↔
µ h0)

+ sin (α − β)
(
W−µ

h0∂↔
µ G+ + W+µ

G−∂↔
µ h0)

− sin (α − β)
(
W−µ

H0∂↔
µ H+ + W+µ

H−∂↔
µ H0)

− cos (α − β)
(
W−µ

H0∂↔
µ G+ + W+µ

G−∂↔
µ H0)

− (
W−µ

A0∂↔
µ H+ − W+µ

H−∂↔
µ A0)

− (W−µ
G0∂↔

µ G+ − W+µ
G−∂↔

µ G0)} ,

while

LV V HH =
e2

2 sin2 θW
W+µ

W−
µ

[
H+H− + G+G−]

+
e2

4 sin2 θW
W+µ

W−
µ

[
(h0)2 + (H0)2 + (A0)2 + (G0)2

]

+
e2

2 sin θW
Aµ
[
H0 cos(α − β) − h0 sin(α − β)

]
× (W+

µ G− + W−
µ G+)

+
e2

2 sin θW
Aµ
[
H0 sin(α − β) + h0 cos(α − β)

]
× (W+

µ H− + W−
µ H+)−

− e2

2 cos θW
Zµ
[
H0 cos(α − β) − h0 sin(α − β)

]
× (W+

µ G− + W−
µ G+)−
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− e2

2 cos θW
Zµ
[
H0 sin(α − β) + h0 cos(α − β)

]
× (W+

µ H− + W−
µ H+)

+
ie2

sin 2θW
G0 (cos θWAµ − sin θWZµ)

× (W+
µ G− − W−

µ G+)
+

ie2

sin 2θW
A0 (cos θWAµ − sin θWZµ)

× (W+
µ H− − W−

µ H+) .

A.2 Coupling constants

As before, the charged (pseudo-) scalars are denoted by the
generic symbols A±, while the neutral ones are written B
and C. We compile the coupling constants in Tables 2–5.

B Useful integrals

At this place we display all necessary loop integrals in terms
of the Passarino–Veltman functions [16–18] listed below:

Table 2. VVHH type

A±B gγWA±B gZWA±B

G±η 1
2 ie2 csθ − 1

2 ie2 scθ

G±h0 − 1
2 ie2 csθ sα−β

1
2 ie2 scθ sα−β

G±H0 1
2 ie2 csθ cα−β − 1

2 ie2 scθ cα−β

H±h0 1
2 ie2 csθ cα−β − 1

2 ie2 scθ cα−β

H±H0 1
2 ie2 csθ sα−β − 1

2 ie2 scθ sα−β

G±G0 − 1
2e2 csθ

1
2e2 scθ

H±A0 − 1
2e2 csθ

1
2e2 scθ

Table 3. VHH type

BC gZBC

G0η −e cs2θ

G0h0 e cs2θ sα−β

G0H0 −e cs2θ cα−β

A0h0 −e cs2θ cα−β

A0H0 −e cs2θ sα−β

A±B gWA±B

G±η 1
2 ie csθ

G±h0 − 1
2 ie csθ sα−β

G±H0 1
2 ie csθ cα−β

H±h0 1
2 ie csθ cα−β

H±H0 1
2 ie csθ sα−β

G±G0 − 1
2e csθ

H±A0 − 1
2e csθ

A+A− gγA+A− gZA+A−

G+G− −ie −ie ct2θ

H+H− −ie −ie ct2θ

Table 4. VVH type

B gZZB gWWB

η iemZ cs2θ iemZ ctθ

h0 −iemZ cs2θ sα−β −iemZ ctθ sα−β

H0 iemZ cs2θ cα−β iemZ ctθ cα−β

gγWG± = iemZ cθ

gZWG± = −iemZ sθ

Table 5. VVV type

gγWW = −ie
gZWW = −ie ctθ

I
(1)
αβγ(p1, p2, m0, m1, m2) ≡

(
β ↔ γ

p1 ↔ p2

)

+ µ2εi3
∫

ddk

(2π)d

× −(2k + p1 + p2)α(2k + p1)β(2k + p2)γ

(k2 − m2
0) [(k + p1)2 − m2

1] [(k + p2)2 − m2
2]

=

− 1
16π2

[
8Cαβγ + 4(p1 + p2)αCβγ + 4p1βCαγ + 4p2γCαβ

+ 2(p1 + p2)αp1βCγ + 2(p1 + p2)αp2γCβ + 2p1βp2γCα

+ (p1 + p2)αp1βp2γC0
]
(p1, p2, m0, m1, m2)

+ (p1 ↔ p2, β ↔ γ),

I
(2)
αβγ(p1, p2, m0, m1, m2) ≡

(
β ↔ γ

p1 ↔ p2

)

+ µ2εi
∫

ddk

(2π)d

× gαγ(2k + p1)β

(k2 − m2
0) [(k + p1)2 − m2

1] [(k + p2)2 − m2
2]

=

− 1
16π2 gαγ

[
2Cβ + p1βC0

]
(p1, p2, m0, m1, m2)

+ (p1 ↔ p2, β ↔ γ), (31)

I
(3)
αβγ(p1, p2, m0, m1, m2) ≡ (p1 ↔ p2, β ↔ γ)

+ µ2εi3
∫

ddk

(2π)d

× gβγ(2k+p1+p2)α−gαγ(2p2−p1+k)β−gαβ(2p1−p2+k)γ

(k2 − m2
0) [(k + p1)2 − m2

1] [(k + p2)2 − m2
2]

=
1

16π2 {2gβγCα − gαγCβ − gαβCγ + [gβγ(p1 + p2)α

− gαγ(2p2−p1)β−gαβ(2p1−p2)γ ] C0} (p1, p2, m0, m1, m2)

+ (p1 ↔ p2, β ↔ γ),
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I
(4)
αβγ(p1, p2, m0, m1)

≡ µ2εi2
∫

ddk

(2π)d

× gαγ(2k + p1)β

(k2 − m2
0) [(k + p1)2 − m2

1]
+
(

β ↔ γ

p1 ↔ p2

)

= − i
16π2 gαγ

[
2Bβ +p1βB0

]
(p1, m0, m1)

+ (p1 ↔p2, β↔γ),

I
(5)
αβγ(p1, p2, m0, m1, m2) ≡

(
β ↔ γ

p1 ↔ p2

)

+ µ2εi3
∫

ddk

(2π)d

× gβγ(p1 − k)α + gαγ(2k + p1)β − gαβ(2p1 + k)γ

(k2 − m2
0) [(k + p1)2 − m2

1] [(k + p2)2 − m2
2]

=
1

16π2 {−gβγCα + 2gαγCβ − gαβCγ

+
[
gβγp1α+gαγp1β−gαβ2p1γ

]
C0
}

(p1, p2, m0, m1, m2)

+ (p1 ↔ p2, β ↔ γ).

The Passarino–Veltman functions are defined as

i
16π2 B0, Bα, Bαβ(p, m0, m1)

≡ µ2ε

∫
ddk

(2π)d

1, kα, kαβ

(k2 − m2
0) [(k + p)2 − m2

1]

× i
16π2 C0, Cα, Cαβ , Cαβγ(p1, p2, m0, m1, m2)

≡ µ2ε

∫
ddk

(2π)d

× 1, kα, kαkβ , kαkβkγ

(k2 − m2
0) [(k + p1)2 − m2

1] [(k + p2)2 − m2
2]

(calculations are performed in dimension d = 4−2ε, prop-
agators are displayed without the “+iη” factors).
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